and

$$
\begin{aligned}
& H_{1}(u)=\exp \left(-\frac{u}{2}\right) \\
& F_{2}(u)=1-\exp \left(-\frac{u}{2}\right)
\end{aligned}
$$

This procedure for evaluating $F_{n}(u)$ is sufficiently fast to permit a direct search for percentage points, in lieu of interpolation. Thus eleven critical levels were calculated to $5 D$ for $n=2(2) 100$ in 1.8 minutes on an IBM 7094.

Many other types of integrals exist for which this recursion scheme is feasible, in particular, Fourier (and other) transforms similar to $I_{n}(b)$.

## Massachusetts Institute of Technology

Cambridge, Massachusetts

1. R. G. Medhurst \& J. H. Roberts, "Evaluation of the integral $I_{n}(b)=$ $2 / \pi \int_{0}^{\infty}((\sin x) / x)^{n} \cos (b x) d x$," Math. Comp., v. 19, 1965, pp. 113-117.
2. R.W. Hamming, Numerical Methods for Scientists and Engineers, International Series in Pure and Applied Mathematics, McGraw-Hill, New York, 1962. MR 25 \#735.
3. K. Harumi, S. Katsura \& J. W. Wrench, Jr., "Values of $2 / \pi \int_{0}^{\infty}((\sin t) / t)^{n} d t$," Math. Comp., v. 14, 1960, p. 379. MR 22 \#12737.
4. H. L. Harter, New Tables of the Incomplete Gamma-Function Ratio and of Percentage Points of the Chi-Square and Beta Distributions, U. S. Government Printing Office, Washington, D. C., 1964. MR $30 \# 1562$.

## Evaluation of Some Integrals Involving the $\psi$-Function

By M. L. Glasser

In the Bateman manuscript project tables, Erdelyi et al. [1] list five integrals over the unit interval involving the $\psi$-function (logarithmic derivative of the gamma function). The first of these is trivial, the second is easily derived by integrating by parts to derive a differential equation in terms of the parameter $a$. The fourth and fifth formulas are obtained by equating the imaginary and real parts of the second and the third is simply the case $a=0$ of the fourth. The purpose of this note is to point out that this table can be easily extended by simple use of the properties of the $\psi$-function. For example, many convergent integrals of the form

$$
I=\int_{m}^{n} f(x) \psi(x) d x
$$

where $m$ and $n$ are integers and $f(x)$ is a function such that $f(x)=-f(m+n-x)$, can be evaluated exactly. Thus, by symmetry

$$
I=\frac{1}{2} \int_{m}^{n} f(x)\{\psi(x)-\psi(m+n-x)\} d x
$$

Now use of the relations $\psi(y+1)=\psi(y)+y^{-1}$ and $\psi(y)-\psi(1-y)=-\pi$ cot $\pi y$ gives immediately

$$
I=\int_{m}^{n} f(x) R(x) d x-\frac{\pi}{2} f_{m}^{n} f(x) \cot \pi x d x
$$

where $R(x)$ is rational and the slash denotes the Cauchy principal part. When $f(x)$ is rational or trigonometric these integrals can frequently be expressed in familiar terms. As an example we consider the case $f(x)=x(1-x) \cos \pi x, m=0, n=1$. Proceeding as above and noting that

$$
\int_{0}^{\pi / 2} x \csc x d x=2 \beta(2), \quad \int_{0}^{\pi / 2} x^{2} \csc x d x=2 \pi \beta(2)-\frac{7}{2} \zeta(3)
$$

where $\beta(2)$ is Catalan's constant and $\zeta$ represents the Riemann zeta function, we find

$$
\int_{0}^{1} f(x) \psi(x) d x=\frac{2}{\pi^{2}}-\frac{7}{2 \pi^{2}} \zeta(3)
$$

Now by making use of the properties of the $\psi$-function we also obtain, e.g.,

$$
\begin{aligned}
\int_{0}^{1} f(x) \psi(-x) d x & =\frac{7}{2 \pi^{2}} \zeta(3), \\
\int_{0}^{1} f(x) \psi\left(x+\frac{1}{2}\right) d x & =\frac{6}{\pi^{2}}-\frac{1}{2} S i \frac{\pi}{2}, \\
\int_{0}^{1} f(x) \psi\left(x-\frac{1}{2}\right) d x & =\frac{4}{\pi^{2}} \\
\int_{0}^{1} f(x)\left\{\psi\left[\frac{x+1}{2}\right]+\psi\left(\frac{x}{2}\right)\right\} d u & =\frac{4}{\pi^{2}}-\frac{7}{\pi^{2}} \zeta(3)
\end{aligned}
$$

It is interesting to note that $\int_{0}^{1} x(1-x) \cos \pi x \psi(x / 2) d x$ appears to be inexpressible in similar closed form.

Battelle Memorial Institute
Columbus, Ohio

1. Erdelyi et al., Tables of Integral Transforms, Vol. II, McGraw-Hill, New York, 1954, p. 305. MR 16, 468.
